Stellar Evolution Part 2: The Death of Stars

In the previous article, we spoke on how stars are born. In this one, we will talk about how do they evolve from a newborn star and then how they eventually die. The death of the stars is not the end as they go on to form Planetary Nebula and White Dwarf. These stars also leave stellar remnants like the Black Hole and Neutron Star which we’ll be discussing about in the future. (if you missed the previous article click here as this article is the continuation to it)

Continuation to the Life Cycle of a Star

4. Mature Star

As the Star has just entered the main sequence (read the previous article on the birth of a star to know more), its temperatures are about 10 million Kelvin (or 107 K) which is the minimum temperature required for hydrogen to fuse with helium. As at this temperature, the hydrogen nuclei (or protons) have enough speed to overcome the electromagnetic repulsion between them as helium nuclei carry a greater positive charge, and their electromagnetic repulsion is higher.

This image is a colour composite made from exposures from the Digitized Sky Survey 2 (DSS2). It shows the area around the red supergiant star Betelgeuse.
This image is a colour composite made from exposures from the Digitized Sky Survey 2 (DSS2). It shows the area around the red supergiant star Betelgeuse. (Image: ESA/Hubble)

Now the temperature at the core is too low for helium fusion, due to which the hydrogen there begins to deplete and the nuclear reactions eventually subside. As a result, the location of the burning moves to the higher layers of the core leading the inner core of non-burning pure helium to glow. However, without nuclear burning to maintain it, the outward pushing gas pressure weakens in the inner helium core, but the inward gravitational pull does not change. As soon as hydrogen becomes substantially depleted, about 10 billion years after the stars enters the main sequence, the helium core begins to contract.

Hydrogen Shell Burning As a star’s core converts more and more of its hydrogen into helium, the hydrogen in the shell surrounding the nonburning helium “ash” burns ever more violently.
Hydrogen Shell Burning As a star’s core converts more and more of its hydrogen into helium, the hydrogen in the shell surrounding the nonburning helium “ash” burns ever more violently.

The shrinking helium core starts to release gravitational energy, increasing the central temperature of the star, leading the overlying layers to heat up and causing the hydrogen in there to fuse even more rapidly than before. Due to this, the hydrogen shell generates energy faster than it did in the main sequence and the shell’s energy production increases continuously as the helium core contracts. A strange noticed is that even though the disappearance of the nuclear fire at its center, star begins to get brighter.

Formation of Southern Crab nebula illustrates its hourglass-shared structure, that has been created by the interaction between a pair of stars at its centre: a red giant and a white dwarf. The red giant is shedding its outer layers in the last phase of its life before it too lives out its final years as a white dwarf.
 Formation of Southern Crab nebula illustrates its hourglass-shared structure, that has been created by the interaction between a pair of stars at its centre: a red giant and a white dwarf. The red giant is shedding its outer layers in the last phase of its life before it too lives out its final years as a white dwarf. (Image: ESA/Hubble)

The pressure exerted by the hydrogen burning causes the star’s non-burning outer layers to increase in radius. Not even gravity can stop them. Even as the core heats up and shrinks, the overlying layers continue to cool and expand. The star, now aged and unbalanced, is on its way to becoming a red giant. This change from a main sequence star to a red giant takes about 100 million years.

The simultaneous contraction of the red giant’s core and expansion of its non-burning layers surrounding the core doesn’t continue forever. A few hundred million years, after the star leaves the main sequence, the central temperature reaches 100 million Kelvin (or 108 K) needed for helium to fuse into carbon, the nuclear fires reignite. Once the burning starts, the core cannot respond fast enough to the rapidly changing conditions within  it and the temperatures sharply rises in a runaway explosion called helium flash.

A helium flash
A helium flash (Image: astroengine.com)

Eventually, the star’s core expands, its density drops and the outward gas pressure push and inward gravity pull comes under a balanced equilibrium. The now stable core, begins to burn helium into carbon at temperatures well above 100 million Kelvin (or 108 K). As helium fuses to become carbon, a new carbon-rich inner core begins to form and a similar phenomenon to the build-up of helium core occurs. Now the helium that the helium has depleted, the fusion has ceased. The non-burning carbon core continues to shrink in size (even as mass increases due to helium fusion) and heats up as gravity pulls it inward, causing the hydrogen and helium burning rates in the overlying layers to increase.

The star now has a contracting carbon inner core surrounded by a burning helium shell, which in turn is surrounded by a hydrogen-burning shell. The outer envelope of the star expands, much as it did in the first red giant stage. Thus, becoming a swollen red giant once again, but the burning rates in the outer shells are fiercer as compared to the first time. In addition, the radius and luminosity are higher as compared to the first red giant and as the carbon core continues to shrink, the outer helium and hydrogen burning shells attain higher and higher temperatures and luminosities.  

Helium Shell Burning Within a few million years after the onset of helium burning, carbon ash accumulates in the star’s inner core
Helium Shell Burning Within a few million years after the onset of helium burning, carbon ash accumulates in the star’s inner core

5. Planetary Nebula & White Dwarf

The aging star has now reached its predicament. As its carbon core is practically dead, while the outer helium and hydrogen burning shells consume fuel at an increasing and furious rate. As it expands, cools and reascends, the star begins to fall apart. As the intense radiation starts coming from within, the outer shells slowly begin to drift away into interstellar space. Slowly at first, then more rapidly as the luminosity of the core increases, the star loses its entire outer shells or envelopes in less than a million year.

his rounded object, named NGC 2022 is a vast orb of gas in space, cast off by an ageing star. The star is visible in the orb's centre, shining through the gases it formerly held onto for most of its stellar life.
 This rounded object, named NGC 2022 is a vast orb of gas in space, cast off by an ageing star. The star is visible in the orb’s centre, shining through the gases it formerly held onto for most of its stellar life. (Image: ESA/Hubble)

The star, a former red giant now consists of two distinct parts: the exposed inner core and the escaping outer shell or envelope. As the core exhausts its last remaining fuel, it contracts and heats up. Eventually, it becomes so hot that its ultraviolet radiation ionizes the inner parts of the surrounding cloud, producing a spectacular display called a Planetary Nebula. In addition, the core becomes the White Dwarf shining only by the stored heat, not by nuclear reactions. This object has a white-hot surface when it first becomes visible, although it appears dim because of its small size.

This Hubble image gives the most detailed view of the entire Crab Nebula ever. The Crab is among the most interesting and well studied objects in astronomy.
This Hubble image gives the most detailed view of the entire Crab Nebula ever. The Crab is among the most interesting and well studied objects in astronomy. (Image: ESA/Hubble)

Theese stars also leave stellar remnants like the Black Hole and Neutron Stars which we’ll be discussing about in the future. So please do look forward to it. (Click Here)

Related articles

Axion: The ultimate solution to the universe?

Physics is studded with puzzles and problems, in fact puzzles can be said to cause progress in physics. Read about the solution to one such puzzle, the Axion, which has the potential to solve three major problems in physics

Quantum Zeno Effect – A Watched Pot Never Boils

There goes a phrase by "A watched pot never boils," which means that time seems to move more slowly when one is anticipating something or waiting for something to occur. But this statement is indeed true in quantum world. Something that is being observed never changes, in short, observation restricts motion.

7 of the most Awesome Science Facts That No One Knows

From multi-million dollar materials to "Toxic" car accidents, these are the 7 most unknown science facts that you have never read before.

Time: The reason behind the Gravitational Force

It is a huge misconception that curved space is the reason behind the gravitational force, people entirely forget that time is intricately woven into space and that it does play an important role in gravity. Read how TIME causes the force of gravity and not SPACE entirely.

Luminous Ether: A Modern Physics Reality that Failed

What if a reality just becomes a myth? What if it just fails? One such modern physics reality is Luminous Ether. From Einstein to Maxwell, every great scientist ever; was puzzled and challenged by this theory. Find out with Vibhor Singh on thehavok.com about how the mystery of this mythical theory unfolds and gets revealed.
Keith Kamson Fernandes
Keith Kamson Fernandeshttps://keithkamson.in/
Integrated Msc in Physics Astrophile | Photography | Tech

2 COMMENTS

LEAVE A REPLY

Please enter your comment!
Please enter your name here
Captcha verification failed!
CAPTCHA user score failed. Please contact us!